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Abstract 

The effect of optical Kerr nonlinearity on the dynamic behaviors of quantum cascade laser operating in the mid-infrared is theoretically 

studied. Our model is based on three-level rate equations including the dependence of the loss on photon number in the cavity. The 

optical stability domain that allows for the determination of current injection is investigated. The equation that allow for the 

determination of the delay time is derived within the premises of our model in the most general case. Furthermore, nonlinear effects 

influence significantly the dynamics of photons in cavity and electrons in the upper laser level.  
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1. Introduction 

 

   Quantum cascade (QC) lasers [1] have gained more and 

more attention as unique coherent light sources in the mid-

infrared. As opposed to conventional ones QC lasers present a 

fundamental advantage residing in their characteristic property 

consisting in the control of the wavelength of the emitted light 

via the layer thickness rather than the band gap. This allows 

for the emission wavelength of such a laser to be changed at 

will without resorting to a different semiconductor. 

    Optical Kerr nonlinearity effects have been studied and 

developed in intersubband transition in multi-quantum well 

structures by several authors [2-4]. The effects are due in mid-

infrared to the large values of third order nonlinearities near a 

resonant intersubband transition [5-6]. The QC laser with 

saturable absorber mechanism due to Kerr effect has also 

been studied both theoretically and experimentally in recent 

years by using Maxwell-Bloch equations derived from 

semiclassical laser treatment when the laser operates in 

multimode regime [7-8].  

    In a QC laser the optical Kerr nonlinearity plays an essential 

role in the behaviour of optical media. A medium with optical 

Kerr nonlinearity can induce mode locking and thus lead to 

the generation of short lasers pulses [3]. On the other hand, 

the QC laser with optical Kerr nonlinearity leads to a photon 

number dependence of the losses and thus influences the 

static and dynamic behaviour regime [9]. Therefore, studies of 

QC laser with optical Kerr nonlinearity are important for 

potential applications in intersubband photonics field. 

   Our theoretical treatment laid below focuses only on  the 

electrically injected three-level QC laser design proposed by 

H. Page
 

[10] where lasing takes place through transitions from 

the upper state (level 3) to the lower state (level 2), and the 

latter being subsequently depopulated by longitudinal optical 

(LO) phonon emission into the ground state (level 1). 

Intersubband phonon scattering also occurs between levels 3 

and 2, and 3 and 1, and is the main competing non-radiative 

process in mid-infrared QC lasers.   

    The aim of this work is to present numerically and 

analytically the effects of optical Kerr nonlinearity on the 

dynamic behaviours of QC laser operating in a single-mode. 

 

2. Rate equation model     

 

The QC laser rate equations with nonlinear Kerr effect for 

electron number
3N , 

2N , and 
1N  in levels 3, 2, and 1, and the 

photon number
phN in the cavity can be written in the following 

form [9]: 
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    In the above system of equations, J  denotes the electron 

current density that tunnels into the upper level and e is the 

electronic charge, whileW and L are the lateral dimensions of 

the cavity, 
32 is the stimulated emission cross section between 

the upper and lower levels.  Denoting by N and
pL the number 

of stages and length of each one of these, the whole volumeV
of the active area is then given by

pNWLL . In addition, in the 

above equations we introduced the mode confinement factor

 and the average velocity of light in the system c given by 

/ effc c n  where
effn and c are respectively the effective 
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refractive index of the cavity and the speed of light in vacuum 

whereas
p stands for photon lifetime and is determined by 

facet loss and waveguide loss of the cavity. The system 

dynamics is mainly determined by the three non-radiative 

scattering times denoted by
32 , 

31 , and 
21  that are due to 

LO-phonon emission between the corresponding levels as well 

as by the radiative spontaneous relaxation time
sp between 

levels 3 and 2. Furthermore, between two adjacent stages we 

model the escape of electrons by a rate1/ out where
out  stands 

for the electron escape time. To complete the picture, we take 

into consideration the proportion of spontaneous emission 

events that emit a photon into the cavity mode denoted by   

[11]. For the sake of convenience, let us also introduce the 

lifetime
3 of the upper level which we write as  

1
1 1

3 32 31  


      

    The last term in Eq. (1d) models the nonlinear loss, per unit 

time, in the cavity due to the nonlinearity of the intersubband 

transition in quantum well. The nonlinear loss coefficient per 

unit time   is obtained through the nonlinear refractive index 

2n [3], defined by 2effn n n I   [3], where n is the 

refractive index, 2n depends on the optical frequency 

detuning, and I is the light intensity in the cavity.  I is related to 

the slowly varying envelope of the electric field E by 
2

02 effI n cE ,   where 0  is the permittivity of vacuum.    

 

Using the relation between the nonlinear loss coefficient per 

length and n , / ( )pn c , one easily finds for 2 0n   the 

relation obtained in literature, 
2

0 E   [7], where 

0 / ( )eff pn c  is the linear loss coefficient per unit length and 

  is called “self-amplitude modulation coefficient” [7] and 

related to the 2n by 0 22 /eff pn n   [9]. 

 Noting that 
0 0 / effc n    and / effc n    and using the 

relation between the electric field and the number of photons
2

02 / ( )phN VE   , one easily finds the relation 

0 0(1 )phN    , where 

0

02

p

eff

c

n V

 
 





,                                                       (2) 

is the dimensionless coefficient which characterises the 

magnitude of nonlinear effects. In our simulations, we will 

consider
0 as the fundamental parameter. 

 

In Eq. (2)   is the photon energy, 
0 1/ p    and the 

proportionality constant 
0/ (2 )p effc n V   is of the order of 5 

V
2

/m in the QC laser studied here. 

    In the following, we use in our calculation the parameters 

taken from Refs. [10-15]: 
21 =0.3ps, 

32 =2.1 ps, 
3 =1.4 ps, 

p

=3.36 ps,  =0.32, 
effn =3.27, N =48, W =34 µm, L =1 mm, 

pL =45 nm,  =2×10
-3

, 
32 =1.8×10

-14

 cm
2

, and 
,ph satN = 

9.16×10
8

. 

 

 

In Ref. [9] we have found theoretically that the stable solution 

of photon number is given by 
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where
,ph satN is the photon saturation number given by [9,12] 

,

3221
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and  
thJ denotes  the threshold current density and given by[9]  

21
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         In Eq. (3), the normalized current injection verify the 

well-known optical stability domain (OSD) condition [9] 

0 ,

0 , max

1 1
1

2 4 4

ph sat

th ph sat th

NJ J

J N J





 
      

 
, (6)  

 

where the quantity
max( / )thJ J is the endpoint of OSD. These 

results agree at least qualitatively with the recent experimental 

observations reported for 8 µm by Gordon et al. [7].  

    We show in Fig.1 the variation of the endpoint of OSD

max( / )thJ J as a function of the dimensionless parameter
0 . It is 

worthwhile to stress the strong decrease of
max( / )thJ J as

0

increases from its minimal value 5×10
-11

 upward. The physical 

reason of this result is apparent: large detuning of the QC laser 

frequency away from resonance leads to high Kerr nonlinearity 

values, thereby suppressing the OSD to near zero. 

    In general, the lower the parameter
0 , the more obvious 

threshold optical stability behaviour. 

    From these results it is easy to determine analytically the 

point where OSD will be lost by setting 
max( / ) 1thJ J   in Eq. 

(6). We have found that the system will lose OSD at

0 ,1/ ph satN  . We can propose a possible experimental test of 

the effect by measuring the output power as a function of the 

current for different frequency detuning of the QC laser. 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

Influence of Optical Kerr Nonlinearity on …  JNTM(2012) A Hamadou et al 

32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Endpoint of optical stability domain
max( / )thJ J    as a 

function of the dimensionless coefficient 
0  

 

3. Dynamical behaviours 

 

In the following we explore the temporal evolution of the 

population of levels
1N , 

2N and
3N , the population inversion

N , and the photon number
phN under various values

0 . We 

carry this out by solving the system of nonlinear differential 

equations given in Eqs.(1.a-d) using a 4
th

 order Runge-Kutta 

method with an integration step
0 0.1h  ps and the following 

initial conditions  
1 2 3(0) (0) (0) (0) 0phN N N N    , the 

injection current J  being finite and above threshold.  

    In Fig 2 we show the evolution of the electron number in 

the levels 3, 2, and 1 as a function of time for different values 

of
0 , the results are all obtained for an injection current

1.45 thJ J . We see that the electrons levels are quickly filled 

during the initial transient and then their population remains 

almost constant during a quite long period of time. After about 

80 ps the number of electrons in the level 3 (level 2) decreases 

(increases) before reaching its stationary value depending on 

the value of
0 : the higher the parameter

0 the lower (higher) 

the steady state value on level 3 (level 2). The steady state 

population in level 3 depends strongly on
0 as well as in level 

2, while the steady state population in level 1 is independent of

0 . 

     

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Time evolution of the number of electrons in the levels 

3, 2 and, 1 of the QC laser for different values
0 : Solid line  

(
0 =0), dashed line (

0 =1.25×10
-10

), dotted line (
0 =2×10

-10

), 

and dash-dotted line (
0 =3×10

-10

) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Time evolution of the photon number
phN and 

population inversion N for different values
0 : Solid line (

0

=0), dashed line (
0 =1.25×10

-10

), dotted line (
0 =2×10

-10

), and 

dash-dotted line (
0 =3×10

-10

)  

    Figure 3 represents the time evolution of the photon 

number
phN in the cavity. Also shown on the same figure is the 

population inversion N  between levels 3 and 2, the results are 

all obtained for an injection current 1.45 thJ J . We can 

clearly see that the time needed to establish the stable 

stationary regime increases with increasing
0 . As the results 

the delay time of QC laser increases with increasing of 

frequency detuning away from resonance. 

     Now, to compute the delay time
dt that elapses between the 

moment the bias is applied and the time the photon number 

reaches 10% of its stationary value we write 
10%d tht t t  , 

where
tht is the turn-on delay time needed for the population 

inversion to reach its threshold value while
10%t , the built-up 

time, is the interval of time where the number of photons is 

still very small. One proceeds in a manner strictly analogous to 

that of the Ref. [12], one gets  

 

,

0

,

0

1
1

10 2
ln

1 1
1

2 10
1

th

ph stat
p

d th

th th

ph stat

th

J

J
N

t t
J J

J J
N

J

J

 



 
   

 

 
   

        
   

 
   

 

 

                       (7) 

 

where the time
tht is solution of the equation [12] 
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 where the coefficients 
1 and 

2  are defined as [12] 

21
1

2132

3

1
1

1








 



, 

21
2

332

21

1

1












,                                                        (9) 

and 
2
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    We show in Fig.4 the variation of the Built-up time as a 

function of the dimensionless coefficient
0 for normalized 

current density 1.45 thJ J . It is found that Built-up time is an 

increasing function of
0 . 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

               

                  Fig.4. Built-up time variation versus coefficient
0  

 

4. Conclusion 

 

    In summary, by using a simple rate equation model, we 

have investigated numerically and analytically the dynamic 

behaviours of a three-level mid-infrared QC laser in presence 

of optical Kerr nonlinearity. We have defined a dimensionless 

parameter
0 , which characterises the magnitude of nonlinear 

effects. We have demonstrated that
0 can affect the optical 

stability domain dramatically. Numerical results show that the 

dynamic transient of electron in the upper laser level and 

photon in the cavity can be greatly modified by varying
0 . We 

also developed an analytical scheme to derive the delay time as 

functions of
0 , J and the different scattering times of the 

system.  
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